Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3

Author:

Martynova Elena1,Zhao Yilin1,Xie Qing1,Zheng Deyou2,Cvekl Ales1ORCID

Affiliation:

1. Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA

2. Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Abstract

Gata3 is a DNA-binding transcription factor involved in cellular differentiation in a variety of tissues including inner ear, hair follicle, kidney, mammary gland and T-cells. In a previous study in 2009, Maeda et al . ( Dev. Dyn. 238 , 2280–2291; doi:10.1002/dvdy.22035 ) found that Gata3 mutants could be rescued from midgestational lethality by the expression of a Gata3 transgene in sympathoadrenal neuroendocrine cells. The rescued embryos clearly showed multiple defects in lens fibre cell differentiation. To determine whether these defects were truly due to the loss of Gata3 expression in the lens, we generated a lens-specific Gata3 loss-of-function model. Analogous to the previous findings, our Gata3 null embryos showed abnormal regulation of cell cycle exit during lens fibre cell differentiation, marked by reduction in the expression of the cyclin-dependent kinase inhibitors Cdkn1b/p27 and Cdkn1c/p57, and the retention of nuclei accompanied by downregulation of Dnase IIβ. Comparisons of transcriptomes between control and mutated lenses by RNA-Seq revealed dysregulation of lens-specific crystallin genes and intermediate filament protein Bfsp2. Both Cdkn1b/p27 and Cdkn1c/p57 loci are occupied in vivo by Gata3, as well as Prox1 and c-Jun, in lens chromatin. Collectively, our studies suggest that Gata3 regulates lens differentiation through the direct regulation of the Cdkn1b/p27and Cdkn1c/p57 expression, and the direct/or indirect transcriptional control of Bfsp2 and Dnase IIβ.

Funder

Foundation for the National Institutes of Health

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3