Strong static magnetic field delayed the early development of zebrafish

Author:

Ge Shuchao1ORCID,Li Jingchen2,Huang Dengfeng1,Cai Yuan1ORCID,Fang Jun3,Jiang Hongyuan2ORCID,Hu Bing1ORCID

Affiliation:

1. Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China

2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China

3. Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Science, Hefei, Anhui 230031, People's Republic of China

Abstract

One of the major topics in magnetobiology is the biological effects of strong static magnetic field (SMF) on living organisms. However, there has been a paucity of the comprehensive study of the long-term effects of strong SMF on an animal's development. Here, we explored this question with zebrafish, an excellent model organism for developmental study. In our research, zebrafish eggs, just after fertilization, were exposed to a 9.0 T SMF for 24 h, the critical period of post-fertilization development from cleavage to segmentation. The effects of strong SMF exposure on the following developmental progress of zebrafish were studied until 6 days post-fertilization (dpf). Results showed that 9.0 T SMF exposure did not influence the survival or the general developmental scenario of zebrafish embryos. However, it slowed down the developmental pace of the whole animal, and the late developers would catch up with their control peers after the SMF was removed. We proposed a mechanical model and deduced that the development delaying effect was caused by the interference of SMF in microtubule and spindle positioning during mitosis, especially in early cleavages. Our research data provide insights into how strong SMF influences the developing organisms through basic physical interactions with intracellular macromolecules.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3