MALAT1 promotes gastric adenocarcinoma through the MALAT1/miR-181a-5p/AKT3 axis

Author:

Lu Zhengmao1,Luo Tianhang1,Pang Tao1,Du Zongxin2,Yin Xiaoyi1,Cui Hangtian1,Fang Guoen1,Xue Xuchao1ORCID

Affiliation:

1. Department of General Surgery, Changhai Hospital, the Second Military Medical University, SMMU, No. 168 Changhai Road, Yangpu District, Shanghai 200433, People's Republic of China

2. The People's Hospital of Gongliu, No. 71 East Ring Road, Gongliu County, Yili 835400, Xingjiang, People's Republic of China

Abstract

Gastric adenocarcinoma, which originates from the gastric mucosal epithelium, has the highest incidence among various malignant tumours in China. As a crucial long non-coding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been suggested to play an important role in many tumours. Here, we aimed to investigate the role and underlying mechanism of MALAT1 in gastric adenocarcinoma. Quantitative reverse transcription polymerase chain reaction was applied to determine the expression levels of MALAT1 in serum and cell lines. A CCK-8 assay and a clonogenic survival assay were used to examine cell proliferation and apoptosis. The protein level of RAC-γ serine/threonine-specific protein kinase (AKT3) was determined by western blot. Our results showed that MALAT1 was highly expressed in the serum of patients with gastric adenocarcinoma and in cell lines. Downregulating MALAT1 inhibited proliferation and promoted apoptosis of MGC-803 cells. In addition, MALAT1 directly targeted and decreased the expression of miR-181a-5p, which in turn upregulated the expression of AKT3. Further, overexpressing miR-181a-5p or directly inhibiting the AKT pathway with the inhibitor ipatasertib exhibited similar effects to MALAT1 knockdown. Our research proposes a novel mechanism where the role of MALAT1 is dependent on the MALAT1/miR-181a-5p/AKT3 axis. MALAT1 competes with AKT3 for miR-181a-5p binding, thereby upregulating the AKT3 protein level and ultimately promoting the growth of gastric adenocarcinoma.

Funder

the National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3