Adenovirus flow in host cell networks

Author:

Flatt Justin W.1ORCID,Butcher Sarah J.1ORCID

Affiliation:

1. Faculty of Biological and Environmental Sciences and HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland

Abstract

Viruses are obligatory parasites that take advantage of intracellular niches to replicate. During infection, their genomes are carried in capsids across the membranes of host cells to sites of virion production by exploiting cellular behaviour and resources to guide and achieve all aspects of delivery and the downstream virus manufacturing process. Successful entry hinges on execution of a precisely tuned viral uncoating program where incoming capsids disassemble in consecutive steps to ensure that genomes are released at the right time, and in the right place for replication to occur. Each step of disassembly is cell-assisted, involving individual pathways that transmit signals to regulate discrete functions, but at the same time, these signalling pathways are organized into larger networks, which communicate back and forth in complex ways in response to the presence of virus. In this review, we consider the elegant strategy by which adenoviruses (AdVs) target and navigate cellular networks to initiate the production of progeny virions. There are many remarkable aspects about the AdV entry program; for example, the virus gains targeted control of a large well-defined local network neighbourhood by coupling several interacting processes (including endocytosis, autophagy and microtubule trafficking) around a collective reference state centred on the interactional topology and multifunctional nature of protein VI. Understanding the network targeting activity of protein VI, as well as other built-in mechanisms that allow AdV particles to be efficient at navigating the subsystems of the cell, can be used to improve viral vectors, but also has potential to be incorporated for use in entirely novel delivery systems.

Funder

Biotieteiden ja Ympäristön Tutkimuksen Toimikunta

Sigrid Juséliuksen Säätiö

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3