Structure of F 1 -ATPase from the obligate anaerobe Fusobacterium nucleatum

Author:

Petri Jessica1,Nakatani Yoshio12,Montgomery Martin G.3,Ferguson Scott A.1,Aragão David4ORCID,Leslie Andrew G. W.5,Heikal Adam12,Walker John E.3,Cook Gregory M.12ORCID

Affiliation:

1. Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand

2. Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand

3. Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK

4. Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

5. Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK

Abstract

The crystal structure of the F 1 -catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum . The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F 1 -ATPases from Caldalkalibacillus thermarum , which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis , which has a very low ATP hydrolytic activity. The β E -subunits in all three enzymes are in the conventional ‘open’ state, and in the case of C. thermarum and M. smegmatis , they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum , the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.

Funder

Royal Society of New Zealand

Medical Research Council

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3