Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed

Author:

Abstract

If a single ion channel record is observed in which two ion channels are never simultaneously open, then it is often of interest to know whether the observations indeed arose from the activity of only one ion channel. This question can be answered if it is possible to calculate the distribution of the duration of runs of single openings in a membrane patch that contains two active channels. If the observed run of single openings is much longer than that expected for a patch with two channels it is likely that only one channel was active. An approximate method is presented for calculating the distribution of the duration of runs of single openings in a patch with two active channels; this method has the advantage that it can be calculated from observable quantities, and requires no knowledge of the details of the ion-channel mechanism or its rate constants. The accuracy of this approximation is tested by exact calculations of the properties of runs of single openings, and of single bursts, for two specific mechanisms and a large range of rate constants. The approximation is good in all cases in which openings occur singly, or in closely spaced bursts. If, as is common in practice, openings occur in clusters that are separated by long shut periods, then overlap of clusters from two different channels may be detected, if no double opening is produced, as a period in the middle of a cluster in which the probability of being open doubles. The results derived here can be applied to such a period to test whether it results from the simultaneous activity of two channels, rather than from a change in the properties of a single channel.

Publisher

The Royal Society

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3