Abstract
We have used the calcium indicator dye arsenazo III, together with a photodiode array, to record intracellular calcium changes simultaneously from all regions of individual guinea pig cerebellar Purkinje cells in slices. The optical signals, recorded with millisecond time resolution, are good indicators of calcium-dependent electrical events. For many cells the sensitivity of the recordings was high enough to detect signals from each array element without averaging. Consequently, it was possible to use these signals to follow the complex spatial and temporal patterns of plateau and spike potentials. Calcium entry corresponding to action potentials was detected from all parts of the dendritic field including the fine spiny branchlets, demonstrating that calcium action potentials spread over the entire arbor. Usually, the entire dendritic tree fired at once. But sometimes only restricted areas had signals at any one moment with transients detected in different regions at other times. In one cell, six separate zones were distinguished. These results show that calcium action potentials could be regenerative in some dendrites and could fail to propagate into others. Signals from plateau potentials were also detected from extensive areas in the dendritic field but were always smaller than those caused by a burst of action potentials.
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献