Flight muscle myofibrillogenesis in the pupal stage ofDrosophilaas examined by X-ray microdiffraction and conventional diffraction

Author:

Iwamoto Hiroyuki1,Inoue Katsuaki1,Matsuo Tatsuhito12,Yagi Naoto1

Affiliation:

1. Research and Utilization Division, Japan Synchrotron Radiation Research InstituteSPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

2. Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka UniversityToyonaka, Osaka 560-8531, Japan

Abstract

In the asynchronous flight muscles of higher insects, the lattice planes of contractile filaments are strictly preserved along the length of each myofibril, making the myofibril a millimetre-long giant single multiprotein crystal. To examine how such highly ordered structures are formed, we recorded X-ray diffraction patterns of the developing flight muscles ofDrosophilapupae at various developmental stages. To evaluate the extent of long-range myofilament lattice order, end-on myofibrillar microdiffraction patterns were recorded from isolated quick-frozen dorsal longitudinal flight muscle fibres. In addition, conventional whole-thorax diffraction patterns were recorded from live pupae to assess the extent of development of flight musculature. Weak hexagonal fluctuations of scattering intensity were observed in the end-on patterns as early as approximately 15 h after myoblast fusion, and in the following 30 h, clear hexagonally arranged reflection spots became a common feature. The result suggests that the framework of the giant single-crystal structure is established in an early phase of myofibrillogenesis. Combined with published electron microscopy results, a myofibril in fused asynchronous flight muscle fibres is likely to start as a framework with fixed lattice plane orientations and fixed sarcomere numbers, to which constituent proteins are added afterwards without altering this basic configuration.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3