Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose

Author:

Scott Graham R.1,Egginton Stuart2,Richards Jeffrey G.1,Milsom William K.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada

2. Angiogenesis Research Group, Centre for Cardiovascular Sciences, University of Birmingham Medical School, Birmingham B15 2TT, UK

Abstract

Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O2diffusion capacity from the blood and reduce intracellular O2diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O2kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O2supply to flight muscle.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3