Affiliation:
1. Department 8.3—Biosciences—Zoology and Physiology, Saarland UniversityPostfach 151150, 66041 Saarbruecken, Germany
Abstract
In both mammals and invertebrates, virus infections can impair a broad spectrum of physiological functions including learning and memory formation. In contrast to the knowledge on the conserved mechanisms underlying learning, the effects of virus infection on different aspects of learning are barely known. We use the honeybee (
Apis mellifera
), a well-established model system for studying learning, to investigate the impact of deformed wing virus (DWV) on learning. Injection of DWV into the haemolymph of forager leads to a RT-PCR detectable DWV signal after 3 days. The detailed behavioural analysis of DWV-infected honeybees shows an increased responsiveness to water and low sucrose concentrations, an impaired associative learning and memory formation, but intact non-associative learning like sensitization and habituation. This contradicts all present studies in non-infected bees, where increased sucrose responsiveness is linked to improved associative learning and to changes in non-associative learning. Thus, DWV seems to interfere with molecular mechanism of learning by yet unknown processes that may include viral effects on the immune system and on gene expression.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献