Miniaturized orb-weaving spiders: behavioural precision is not limited by small size

Author:

Eberhard William G1

Affiliation:

1. Smithsonian Tropical Research Institute, and Escuela de Biología, Universidad de Costa RicaCiudad Universitaria, Costa Rica

Abstract

The special problems confronted by very small animals in nervous system design that may impose limitations on their behaviour and evolution are reviewed. Previous attempts to test for such behavioural limitations have suffered from lack of detail in behavioural observations of tiny species and unsatisfactory measurements of their behavioural capacities. This study presents partial solutions to both problems. The orb-web construction behaviour of spiders provided data on the comparative behavioural capabilities of tiny animals in heretofore unparalleled detail; species ranged about five orders of magnitude in weight, from approximately 50–100 mg down to some of the smallest spiders known (less than 0.005 mg), whose small size is a derived trait. Previous attempts to quantify the ‘complexity’ of behaviour were abandoned in favour of using comparisons of behavioural imprecision in performing the same task. The prediction of the size limitation hypothesis that very small spiders would have a reduced ability to repeat one particular behaviour pattern precisely was not confirmed. The anatomical and physiological mechanisms by which these tiny animals achieve this precision and the possibility that they are more limited in the performance of higher-order behaviour patterns await further investigation.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference53 articles.

1. Strepsipteran brains and effects of miniaturization (Insecta)

2. Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp

3. Coddington J. A. 2005 Phylogeny and classification of spiders. In Spiders of North America (eds D. Ubick P. Paquin P. E. Cushing V. Roth). American Arachnological Society. See http://www.americanarachnology.org.

4. Size and behavior in ants: Constraints on complexity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3