Ecological and life-history factors influencing the evolution of maternal antibody allocation: a phylogenetic comparison

Author:

Addison BriAnne1,Klasing Kirk C.2,Robinson W. Douglas3,Austin Suzanne H.3,Ricklefs Robert E.1

Affiliation:

1. Biology Department, University of Missouri-St Louis, 1 University Boulevard, St Louis, MO 63130, USA

2. Department of Animal Science, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA

3. Oak Creek Lab of Biology, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA

Abstract

Maternally derived yolk antibodies provide neonates with immune protection in early life at negligible cost to mothers. However, developmental effects on the neonate's future immunity are potentially costly and thus could limit yolk antibody deposition. The benefits to neonatal immunity must be balanced against costs, which may depend on neonate vulnerability to pathogens, developmental trajectories and the immunological strategies best suited to a species' pace of life. We measured yolk antibodies and life-history features of 23 species of small Neotropical birds and assessed the evidence for each of several hypotheses for life history and ecological effects on the evolution of yolk antibody levels. Developmental period and yolk antibodies are negatively related, which possibly reflect the importance of humoral immune priming through antigen exposure, and selection to avoid autoimmunity, in species with a slower pace of life. There is also a strong relationship between body size and yolk antibody concentration, suggesting that larger species are architecturally equipped to produce and transfer higher concentrations of antibodies. These results suggest that developmental effects of maternally derived antibodies, such as imprinting effects on B-cell diversity or autoimmune effects, are important and deserve more consideration in future research.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3