A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum

Author:

Sachs Joel L1,Wilcox Thomas P1

Affiliation:

1. Section of Integrative Biology, Patterson Laboratories, 1 University Station C0930, University of TexasAustin, TX 78712-0253, USA

Abstract

One of the outstanding and poorly understood examples of cooperation between species is found in corals, hydras and jellyfish that form symbioses with algae. These mutualistic algae are mostly acquired infectiously from the seawater and, according to models of virulence evolution, should be selected to parasitize their hosts. We altered algal transmission between jellyfish hosts in the laboratory to examine the potential for virulence evolution in this widespread symbiosis. In one experimental treatment, vertical transmission of algae (parent to offspring) selected for symbiont cooperation, because symbiont fitness was tied to host reproduction. In the other treatment, horizontal transmission (infectious spread) decoupled symbiont fitness from the host, potentially allowing parasitic symbionts to spread. Fitness estimates revealed a striking shift to parasitism in the horizontal treatment. The horizontally transmitted algae proliferated faster within hosts and had higher dispersal rates from hosts compared to the vertical treatment, while reducing host reproduction and growth. However, a trade-off was detected between harm caused to hosts and symbiont fitness. Virulence trade-offs have been modelled for pathogens and may be critical in stabilising ‘infectious’ symbioses. Our results demonstrate the dynamic nature of this symbiosis and illustrate the potential ease with which beneficial symbionts can evolve into parasites.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference29 articles.

1. The Evolution of Cooperation

2. Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis

3. A study of the symbiotic relationship between Symbiodinium microadriaticum Freudenthal, a zooxanthella and the upside-down Jellyfish, Cassiopeia sp;Balderston W.L;Nova Hedwigia,1969

4. Perspective: virulence;Bull J.J;Evolution,1994

5. Distinguishing mechanisms for the evolution of co-operation

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3