The dynamics of genetic and morphological variation on volcanic islands

Author:

Gübitz Thomas12,Thorpe Roger S1,Malhotra Anita1

Affiliation:

1. School of Biological Sciences, University of WalesBangor, Gwynedd LL57 2UW, UK

2. Institute of Cell and Molecular Biology, The University of EdinburghRutherford Building 1.02, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK

Abstract

Oceanic archipelagos of volcanic origin have been important in the study of evolution because they provide repeated natural experiments allowing rigorous tests of evolutionary hypotheses. Ongoing volcanism on these islands may, however, affect the evolutionary diversification of species. Analysis of population structure and phylogeographic patterns in island populations can provide insight into evolutionary dynamics on volcanic islands. We analysed genetic and morphological variation in the gecko Tarentola boettgeri on the island of Gran Canaria and compared it with Tarentola delalandii on Tenerife, a neighbouring volcanic island of similar age but distinctly different geological past. Intraspecific divergence of mitochondrial haplotypes indicates long-term persistence of Tarentola on each island, with a phylogeographic signal left by older volcanic events. More recent volcanic eruptions (approximately 0.2 million years ago on Tenerife, approximately 2.2 million years ago on Gran Canaria) have left a signature of population expansion in the population genetic structure, the strength of which depends on the time since the last major volcanic eruption on each island. While these stochastic events have left traces in morphological variation in Tenerife, in Gran Canaria geographical variation was solely associated with environmental variables. This suggests that historically caused patterns in morphology may be overwritten by natural selection within 2 million years.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3