Affiliation:
1. Section of Integrative Biology C0930, University of Texas at AustinAustin, TX 78712, USA
Abstract
In terrestrial environments, the exchange of respiratory gases exacts a water cost: obtaining oxygen or carbon dioxide requires losing water. Insect eggs should be especially sensitive to this tradeoff—because they are unable to forage for water, have high surface area-to-volume ratios, and experience large temperature-driven changes in oxygen demand. Previous work from our laboratory, on eggs of a common hawkmoth,Manduca sexta, has shown that, during development, metabolic rate and water loss rates rise in parallel. These correlative data suggest that eggshell conductance increases to accommodate increasing metabolic demand. Here, we test this idea experimentally by subjecting eggs ofM. sextato 15, 21 (normoxia) and 35% oxygen for 24 h, while measuring rates of metabolism (as carbon dioxide emission) and water loss. Hypoxia depressed egg metabolic rates, but led to pronounced, rapid increases in water loss. By contrast, hyperoxia had no significant effect on metabolism or water loss. These data demonstrate that insect eggs actively participate in balancing oxygen gain and water loss, and that they use tissue oxygen status, or some correlate of it, as a cue for increasing eggshell conductance. Rapid control over conductance may allow eggs to conserve water during an initial period of low metabolic demand, thereby deferring water costs of respiratory gas exchange until late in development.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献