Implications of flexible-shelled eggs in a Cretaceous choristoderan reptile

Author:

Hou Lian-Hai1,Li Pi-Peng1,Ksepka Daniel T.23,Gao Ke-Qin4,Norell Mark A.5

Affiliation:

1. Shenyang Normal University, Shenyang 110034, People's Republic of China

2. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

3. Department of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA

4. School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China

5. Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA

Abstract

Flexible, or soft-shelled, eggs are almost unknown in the fossil record, leaving large gaps in our knowledge of the reproductive biology of many tetrapod clades. Here, we report two flexible-shelled eggs of the hyphalosaurid choristodere Hyphalosaurus baitaigouensis from the Early Cretaceous of China, one containing an embryo and the second associated with a neonate. Choristoderes are an enigmatic group of aquatic reptiles that survived the K–T extinction but died out in the Miocene. Hyphalosaurids, a specialized clade of Choristodera, resemble miniature plesiosaurs and are considered to be primarily aquatic in habit. Scanning electron microscopy of samples from the eggs reveals a thin, non-columnar external mineralized layer characterized by rounded nodes and tentatively identified poorly structured irregular pores, with an underlying amorphous layer presumably representing decomposed protein fibrils. While the relationships of Choristodera remain controversial, eggshell microstructure more closely resembles that of Lepidosauromorpha (the lineage including lizards) as opposed to that of Archosauromorpha (the lineage including birds and crocodiles).

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3