Individual differences, density dependence and offspring birth traits in a population of red deer

Author:

Stopher Katie V12,Pemberton Josephine M2,Clutton-Brock Tim H3,Coulson Tim14

Affiliation:

1. Division of Biology, Faculty of Life Sciences, Imperial College at Silwood ParkAscot, Berks SL5 7PY, UK

2. Institute of Evolutionary Biology, University of EdinburghEdinburgh EH9 3JT, UK

3. Department of Zoology, University of CambridgeDowning Street, Cambridge CB2 3EJ, UK

4. NERC Centre for Population Biology, Imperial College at Silwood ParkAscot, Berks SL5 7PY, UK

Abstract

Variation between individuals is an essential component of natural selection and evolutionary change, but it is only recently that the consequences of persistent differences between individuals on population dynamics have been considered. In particular, few authors have addressed whether interactions exist between individual quality and environmental variation. In part, this is due to the difficulties of collecting sufficient data, but also the challenge of defining individual quality. Using a long-established study population of red deer, Cervus elaphus, inhabiting the North Block of the Isle of Rum, and three quality measures, this paper investigates how differences in maternal quality affect variation in birth body mass and date, as population density varies, and how this differs depending on the sex of the offspring and the maternal quality measure used. Significant interactions between maternal quality, measured as a hind's total contribution to population growth, and population density are reported for birth mass, but only for male calves. Analyses using dominance or age at primiparity to define maternal quality showed no significant interactions with population density, highlighting the difficulties of defining a consistent measure of individual quality.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3