The effects of sulphide on growth and behaviour of the thiotrophicZoothamnium niveumsymbiosis

Author:

Rinke Christian1,Lee Raymond2,Katz Sigrid1,Bright Monika1

Affiliation:

1. Department of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria

2. School of Biological Sciences, Washington State UniversityPullman, WA 99164-4236, USA

Abstract

Zoothamnium niveum(Ciliophora, Oligohymenophora) is a giant, colonial marine ciliate from sulphide-rich, shallow-water habitats, obligatorily associated with the ectosymbiotic, chemoautotrophic, sulphide-oxidizing bacterium ‘CandidatusThiobios zoothamnicoli’. The aims of this study were to characterize the natural habitat and investigate growth, reproduction, survival and maintenance of the symbiosis fromCorsica, France (Mediterranean Sea) using a flow-through respirometer providing stable chemical conditions. We were able to successfully cultivate theZ. niveumsymbiosis during its entire lifespan and document reproduction, whereby the optimum conditions were found to range from 3 to 33 μmol l−1ΣH2S in normoxic seawater. Starting with an inoculum of 13 specimens, we found up to 173 new specimens that were asexually produced after only 11 days. Observed mean lifespan of theZ. niveumcolonies was approximately 11 days and mean colony size reached 51 branches, from which rapid host division rates of up to every 4.1 hours were calculated. Comparing the ectosymbiotic population fromZ. niveumcolonies collected from their natural habitat with those cultivated under optimal conditions, we found significant differences in the bacterial morphology and the frequency of dividing cells on distinct host parts, which is most likely caused by behaviour of the host ciliate. Applying different sulphide concentrations we revealed that the symbiosis was not able to survive without sulphide and was harmed by high sulphide conditions. To our knowledge, this study reports the first successful cultivation of a thiotrophic ectosymbiosis.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3