Affiliation:
1. Laboratory of Aquatic Ecology and Evolutionary Biology, University of LeuvenDeberiotstraat 32, 3000 Leuven, Belgium
Abstract
Physiological costs of compensatory growth are poorly understood, yet may be the key components in explaining why growth rates are typically submaximal. Here we tested the hypothesized direct costs of compensatory growth in terms of oxidative stress. We assessed oxidative stress in a study where we generated compensatory growth in body mass by exposing larvae of the damselfly
Lestes viridis
to a transient starvation period followed by ad libitum food. Compensatory growth in the larval stage was associated with higher oxidative stress (as measured by induction of superoxide dismutase and catalase) in the adult stage. Our results challenge two traditional views of life-history theory. First, they indicate that age and mass at metamorphosis not necessarily completely translate larval stress into adult fitness and that the observed physiological cost may explain hidden carry-over effects. Second, they support the notion that costs of compensatory growth may be associated with free-radical-mediated trade-offs and not necessarily with resource-mediated trade-offs.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
172 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献