Emergence of gynodioecy in wild beet (Beta vulgarisssp.maritimaL.): a genealogical approach using chloroplastic nucleotide sequences

Author:

Fénart Stéphane1,Touzet Pascal1,Arnaud Jean-François1,Cuguen Joël1

Affiliation:

1. Laboratoire de Génétique et Évolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de LilleBâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France

Abstract

Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male sterility, wild beetBeta vulgarisssp.maritimaexhibits a minority of sterilizing cytoplasms among numerous non-sterilizing ones. Many studies on population genetics have explored the molecular diversity of different CMS cytoplasms, but questions remain concerning their evolutionary dynamics. In this paper we report one of the first investigations on phylogenetic relationships between CMS and non-CMS lineages. We investigated the phylogenetic relationships between 35 individuals exhibiting different mitochondrial haplotypes. Relying on the high linkage disequilibrium between chloroplastic and mitochondrial genomes, we chose to analyse the nucleotide sequence diversity of three chloroplastic fragments (trnKintron,trnD–trnTandtrnL–trnFintergenic spacers). Nucleotide diversity appeared to be low, suggesting a recent bottleneck during the evolutionary history ofB. vulgarisssp.maritima. Statistical parsimony analyses revealed a star-like genealogy and showed that sterilizing haplotypes all belong to different lineages derived from an ancestral non-sterilizing cytoplasm. These results suggest a rapid evolution of male sterility in this taxon. The emergence of gynodioecy in wild beet is confronted with theoretical expectations, describing either gynodioecy dynamics as the maintenance of CMS factors through balancing selection or as a constant turnover of new CMSs.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3