Human locomotion on snow: determinants of economy and speed of skiing across the ages

Author:

Formenti Federico1,Ardigò Luca P1,Minetti Alberto E1

Affiliation:

1. Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University Cheshire, Hassall Road, Alsager, Stoke-on-Trent, ST7 2HL, UK

Abstract

We explore here the evolution of skiing locomotion in the last few thousand years by investigating how humans adapted to move effectively in lands where a cover of snow, for several months every year, prevented them from travelling as on dry ground. Following historical research, we identified the sets of skis corresponding to the ‘milestones’ of skiing evolution in terms of ingenuity and technology, built replicas of them and measured the metabolic energy associated to their use in a climate-controlled ski tunnel. Six sets of skis were tested, covering a span from 542 AD to date. Our results show that: (i) the history of skiing is associated with a progressive decrease in the metabolic cost of transport, (ii) it is possible today to travel at twice the speed of ancient times using the same amount of metabolic power and (iii) the cost of transport is speed-independent for each ski model, as during running. By combining this finding with the relationship between time of exhaustion and the sustainable fraction of metabolic power, a prediction of the maximum skiing speed according to the distance travelled is provided for all past epochs, including two legendary historical journeys (1206 and 1520 AD) on snow. Our research shows that the performances in races originating from them (Birkebeiner and Vasaloppet) and those of other modern competitions (skating versus classical techniques) are well predicted by the evolution of skiing economy. Mechanical determinants of the measured progression in economy are also discussed in the paper.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3