Parasites alter host phenotype and may create a new ecological niche for snail hosts

Author:

Miura Osamu1,Kuris Armand M2,Torchin Mark E3,Hechinger Ryan F2,Chiba Satoshi1

Affiliation:

1. Department of Ecology and Evolutionary Biology Graduate School of Life Sciences, University of TohokuAobayama, Sendai 980-8578, Japan

2. Marine Science Institute and Department of Ecology Evolution and Marine Biology, University of CaliforniaSanta Barbara, CA 93106, USA

3. Smithsonian Tropical Research InstituteApartado 0843-03092 Balboa, Ancon, Panama City, Panama

Abstract

By modifying the behaviour and morphology of hosts, parasites may strongly impact host individuals, populations and communities. We examined the effects of a common trematode parasite on its snail host, Batillaria cumingi (Batillariidae). This widespread snail is usually the most abundant invertebrate in salt marshes and mudflats of the northeastern coast of Asia. More than half (52.6%, n =1360) of the snails in our study were infected. We found that snails living in the lower intertidal zone were markedly larger and exhibited different shell morphology than those in the upper intertidal zone. The large morphotypes in the lower tidal zone were all infected by the trematode, Cercaria batillariae (Heterophyidae). We used a transplant experiment, a mark-and-recapture experiment and stable carbon isotope ratios to reveal that snails infected by the trematode move to the lower intertidal zone, resume growth after maturation and consume different resources. By simultaneously changing the morphology and behaviour of individual hosts, this parasite alters the demographics and potentially modifies resource use of the snail population. Since trematodes are common and often abundant in marine and freshwater habitats throughout the world, their effects potentially alter food webs in many systems.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3