Affiliation:
1. Integrative Physiology, School of Biological Sciences A08, The University of SydneySydney, NSW 2006, Australia
Abstract
The evolution of endothermy is one of the most significant events in vertebrate evolution. Adult mammals and birds are delineated from their early ontogenetic stages, as well as from other vertebrates, by high resting metabolic rates and consequent internal heat production. We used the embryonic development of a bird (Gallus gallus) as a model to investigate the metabolic transition between ectothermy and endothermy. Increases in aerobic capacity occur at two functional levels that are regulated independently from each other: (i) upregulation of gene expression; and (ii) significant increases in the catalytic activity of the main oxidative control enzymes. Anaerobic capacity, measured as lactate dehydrogenase activity, is extremely high during early development, but diminishes at the same time as aerobic capacity increases. Changes in lactate dehydrogenase activity are independent from its gene expression. The regulatory mechanisms that lead to endothermic metabolic capacity are similar to those of ectotherms in their response to environmental change. We suggest that the phylogenetic occurrence of endothermy is restricted by its limited selective advantages rather than by evolutionary innovation.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献