Community monopolization: local adaptation enhances priority effects in an evolving metacommunity

Author:

Urban Mark C.1,De Meester Luc2

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA

2. Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium

Abstract

The diversity and composition of biological communities might often depend on colonization history because early colonists can exclude future colonists through a priority effect. These priority effects, which have been observed across a wide variety of ecosystems, often arise because early colonists have sufficient time to use available resources efficiently and subsequently withhold them from invaders. Here, we explore the extent to which rapid local adaptive evolution contributes to the pervasiveness of these priority effects. Using an individual-based simulation, we show that early colonization allows the descendants of colonists to adapt to novel conditions and reduce the establishment success of an initially ecologically equivalent competing species. Our model predicts that slight differences in colonization timing and adaptive capacity between species can substantially alter the dynamics and diversity of communities. We also show that priority effects and gene flow can generate a novel mechanism for the expansion and retraction of species distributions in a metacommunity. Our results suggest that local adaptation combined with stochastic colonization events can obscure direct relationships between species distributions and environmental gradients. Given the increasing recognition of rapid, microgeographic evolution in natural populations, we expect that evolutionary priority effects could affect the structure and dynamics of many natural metacommunities.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3