Contact heterogeneity in deer mice: implications for Sin Nombre virus transmission

Author:

Clay Christine A1,Lehmer Erin M2,Previtali Andrea3,St. Jeor Stephen4,Dearing M. Denise3

Affiliation:

1. Department of Biology, Westminster College1840 South 1300 East, Salt Lake City, UT 84105, USA

2. Department of Biology, Fort Lewis College Durango, CO 81301, USA

3. Department of Biology, University of UtahSalt Lake City, UT 84105, USA

4. Department of Microbiology, University of NevadaReno, NV 89557,USA

Abstract

Heterogeneities within disease hosts suggest that not all individuals have the same probability of transmitting disease or becoming infected. This heterogeneity is thought to be due to dissimilarity in susceptibility and exposure among hosts. As such, it has been proposed that many host–pathogen systems follow the general pattern whereby a small fraction of the population accounts for a large fraction of the pathogen transmission. This disparity in transmission dynamics is often referred to as ‘20/80 Rule’, i.e. approximately 20 per cent of the hosts are responsible for 80 per cent of pathogen transmission. We investigated the role of heterogeneity in contact rates among potential hosts of a directly transmitted pathogen by examining Sin Nombre virus (SNV) in deer mice ( Peromyscus maniculatus ). Using foraging arenas and powder marking, we documented contacts between wild deer mice in Great Basin Desert, central Utah. Our findings demonstrated heterogeneity among deer mice, both in frequency and in duration of contacts with other deer mice. Contact dynamics appear to follow the general pattern that a minority of the population accounts for a majority of the contacts. We found that 20 per cent of individuals in the population were responsible for roughly 80 per cent of the contacts observed. Larger-bodied individuals appear to be the functional group with the greatest SNV transmission potential. Contrary to our predictions, transmission potential was not influenced by breeding condition or sex.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3