Abstract
Animals living in complex environments experience differing risks of predation depending upon their location within the landscape. An animal could reduce the risk it experiences by remaining in a refuge site, but it may need to emerge from its refuge and enter more dangerous sites for feeding and other activities. Here, I consider the actions of an animal choosing to travel a short distance between a safe refuge and a dangerous foraging site, such as a bird leaving cover to visit a feeder. Although much work has been conducted examining the choice between a refuge and a foraging site when faced with a trade-off between starvation and predation risk, the work presented here is the first to consider the travel behaviour between these locations. Using state-dependent stochastic dynamic programming, I illustrate that there are several forms of optimal behaviour that can emerge. In some situations, the animal should choose to travel without stopping between sites, but in other cases, it is optimal for the animal to travel hesitantly towards the food, and to stop its travel at a point before it reaches the refuge. I discuss how this hesitant ‘dawdling’ behaviour may be optimal, and suggest further work to test these predictions.
Funder
University of Bristol Returning Carers’ Scheme
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献