Comparative transcriptome analysis of the antenna and proboscis reveals feeding state-dependent chemosensory genes in Eupeodes corollae

Author:

Chen Ruipeng1ORCID,Ai Dong1,Wang Guirong12ORCID,Wang Bing1ORCID

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China

2. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People’s Republic of China

Abstract

The physiological state of an insect can affect its olfactory system. However, the molecular mechanism underlying the effect of nutrition-dependent states on odour-guided behaviours in hoverflies remains unclear. In this study, comparative transcriptome analysis of the antenna and proboscis from Eupeodes corollae under different feeding states was conducted. Compared with the previously published antennal transcriptome, a total of 32 novel chemosensory genes were identified, including 4 ionotropic receptors, 17 gustatory receptors, 9 odorant binding proteins and 2 chemosensory proteins. Analysis of differences in gene expression between different feeding states in male and female antennae and proboscises revealed that the expression levels of chemosensory genes were impacted by feeding state. For instance, the expression levels of EcorOBP19 in female antennae, EcorOBP6 in female proboscis, and EcorOR6 , EcorOR14 , EcorIR5 and EcorIR84a in male antennae were significantly upregulated after feeding. On the other hand, the expression levels of EcorCSP7 in male proboscis and EcorOR40 in male antennae were significantly downregulated. These findings suggest that nutritional state plays a role in the adaptation of hoverflies' olfactory system to food availability. Overall, our study provides important insights into the plasticity and adaptation of chemosensory systems in hoverflies.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program

the Central Public-interest Scientific Institution Basal Research Fund

Major Special Projects for Green Pest Control

Shenzhen Science and Technology Program

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3