What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs

Author:

Heraud-Farlow Jacki E.12ORCID,Walkley Carl R.123ORCID

Affiliation:

1. Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia

2. Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia

3. Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia

Abstract

Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000–150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo . Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer.

Funder

5point Foundation

National Health and Medical Research Council

SVI Rising Star Award

Australian Research Council

Department of Health, State Government of Victoria

Marian and E.H. Flack Trust

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3