Evolution of thymopoietic microenvironments

Author:

Morimoto Ryo1ORCID,Swann Jeremy1,Nusser Anja1,Trancoso Inês1ORCID,Schorpp Michael1,Boehm Thomas1ORCID

Affiliation:

1. Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany

Abstract

In vertebrates, the development of lymphocytes from undifferentiated haematopoietic precursors takes place in so-called primary lymphoid organs, such as the thymus. Therein, lymphocytes undergo a complex differentiation and selection process that culminates in the generation of a pool of mature T cells that collectively express a self-tolerant repertoire of somatically diversified antigen receptors. Throughout this entire process, the microenvironment of the thymus in large parts dictates the sequence and outcome of the lymphopoietic activity. In vertebrates, direct genetic evidence in some species and circumstantial evidence in others suggest that the formation of a functional thymic microenvironment is controlled by members of the Foxn1/4 family of transcription factors. In teleost fishes, both Foxn1 and Foxn4 contribute to thymopoietic activity, whereas Foxn1 is both necessary and sufficient in the mammalian thymus. The evolutionary history of Foxn1/4 genes suggests that an ancient Foxn4 gene lineage gave rise to the Foxn1 genes in early vertebrates, raising the question of the thymopoietic capacity of the ancestor common to all vertebrates. Recent attempts to reconstruct the early events in the evolution of thymopoietic tissues by replacement of the mouse Foxn1 gene by Foxn1 -like genes isolated from various chordate species suggest a plausible scenario. It appears that the primordial thymus was a bi-potent lymphoid organ, supporting both B cell and T cell development; however, during the course of vertebrate, evolution B cell development was gradually diminished converting the thymus into a site specialized in T cell development.

Funder

Deutsche Forschungsgemeinschaft

Japan Society for the Promotion of Science

European Research Council

Jung-Stiftung für Wissenschaft und Forschung

Max-Planck-Gesellschaft

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3