Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly

Author:

Lin You-Jun1ORCID,Chang Sheng-Kai1ORCID,Lai Yu-Hsiang1ORCID,Yang Jing-Tang1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

Unlike other insects, a butterfly uses a small amplitude of the wing-pitch motion for flight. From an analysis of the dynamics of real flying butterflies, we show that the restrained amplitude of the wing-pitch motion enhances the wake-capture effect so as to enhance forward propulsion. A numerical simulation refined with experimental data shows that, for a small amplitude of the wing-pitch motion, the shed vortex generated in the downstroke induces air in the wake region to flow towards the wings. This condition enables a butterfly to capture an induced flow and to acquire an additional forward propulsion, which accounts for more than 47% of the thrust generation. When the amplitude of the wing-pitch motion exceeds 45°, the flow induced by the shed vortex drifts away from the wings; it attenuates the wake-capture effect and causes the butterfly to lose a part of its forward propulsion. Our results provide one essential aerodynamic feature for a butterfly to adopt a small amplitude of the wing-pitch motion to enhance the wake-capture effect and forward propulsion. This work clarifies the variation of the flow field correlated with the wing-pitch motion, which is useful in the design of wing kinematics of a micro-aerial vehicle.

Funder

National Taiwan University

Ministry of Science and Technology, Taiwan

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3