Bakerian lecture - Amino-acid analysis and the structure of proteins

Author:

Abstract

In recent years the X-ray crystallographers have made remarkable advances in the interpretation of protein structure, and it is becoming more and more evident that a stage has been reached when their views need to be reconciled with data obtained from accurate amino-acid analysis of the proteins concerned. In all too many cases these data are, unfortunately, not yet available, and the reason why the analyst cannot supply them at short notice is due not so much to the com­plexity of the problem—which he has never sought to minimize—but to the fact that many of the more important methods of analysis in current use are an inheritance from an earlier period when such accuracy as is now demanded would have been considered almost impossible of achievement. From about 1840 until 1900, following the lead given by Liebig and later by Ritthausen, the attention of protein chemists was centred chiefly on the prepara­tion and characterization of various animal and seed proteins; as substances of physiological interest their enzymic digestion products were studied in elaborate detail by Kühne, but little attention was paid to the ultimate decomposition products, the amino-acids, in spite of the fact that Ritthausen as early as 1872 had pointed out that the proportions in which these occur might be characteristic of the protein concerned. The enunciation by Hofmeister and Fischer of the peptide hypothesis in 1901 emphasized for the first time the fundamental importance of the amino-acids, and a most fruitful period followed in which attention became almost exclusively focused on these products. Under the inspiring leadership of Fischer himself great improvements were effected in the separation and identification of the amino-acids, so that by about 1915 reasonably good analyses were available for most of the better-known proteins. Though far from complete, the analytical data showed quite clearly that proteins could differ widely in composition, and in many cases it was possible to correlate composition with nutritive value. Such an aim was, indeed, the incentive behind much of the work of this period.

Publisher

The Royal Society

Subject

General Medicine

Reference4 articles.

1. A dair G. S. 1937 A n n .

2. A dair G. S. & A dair M. E . 1934 Biochem.

3. A stbury W . T. 1934 Cold S p r. H ath.

4. Rev. Biochem. 6

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From directed evolution to computational enzyme engineering—A review;AIChE Journal;2019-11-07

2. Wartime discoveries on amino acids: functions in protein structure and as a dietary nitrogen source;Biochemical Journal;2012-09-12

3. Die Phytochemie Des Schwefels;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

4. Certain Aspects of Intermediary Metabolism of Glutamine, Asparagine, and Glutathione;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

5. Reflections on a century of protein chemistry;Biophysical Chemistry;2002-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3