Small or far away? Size and distance perception in the praying mantis

Author:

Nityananda Vivek1ORCID,Bissianna Geoffrey12,Tarawneh Ghaith1ORCID,Read Jenny1ORCID

Affiliation:

1. Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK

2. M2 Comportement Animal et Humain, École doctorale de Rennes, Vie Agro Santé, University of Rennes 1, Rennes 35000, France

Abstract

Stereo or ‘3D’ vision is an important but costly process seen in several evolutionarily distinct lineages including primates, birds and insects. Many selective advantages could have led to the evolution of stereo vision, including range finding, camouflage breaking and estimation of object size. In this paper, we investigate the possibility that stereo vision enables praying mantises to estimate the size of prey by using a combination of disparity cues and angular size cues. We used a recently developed insect 3D cinema paradigm to present mantises with virtual prey having differing disparity and angular size cues. We predicted that if they were able to use these cues to gauge the absolute size of objects, we should see evidence for size constancy where they would strike preferentially at prey of a particular physical size, across a range of simulated distances. We found that mantises struck most often when disparity cues implied a prey distance of 2.5 cm; increasing the implied distance caused a significant reduction in the number of strikes. We, however, found no evidence for size constancy. There was a significant interaction effect of the simulated distance and angular size on the number of strikes made by the mantis but this was not in the direction predicted by size constancy. This indicates that mantises do not use their stereo vision to estimate object size. We conclude that other selective advantages, not size constancy, have driven the evolution of stereo vision in the praying mantis. This article is part of the themed issue ‘Vision in our three-dimensional world’.

Funder

Leverhulme Trust

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modulation of prey capture kinematics in relation to prey distance helps predict success;Journal of Experimental Biology;2024-06-01

2. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea;Journal of Comparative Neurology;2024-03

3. Enhancing LGMD-based model for collision prediction via binocular structure;Frontiers in Neuroscience;2023-09-05

4. Cue Disparity and Visual Selective Attention in Praying Mantises;2023-03-31

5. Stereopsis without correspondence;Philosophical Transactions of the Royal Society B: Biological Sciences;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3