Temperature variability alters the stability and thresholds for collapse of interacting species

Author:

Dee Laura E.1ORCID,Okamtoto Daniel2ORCID,Gårdmark Anna3ORCID,Montoya Jose M.4,Miller Steve J.5

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA

2. Department of Biological Science, Florida State University, Tallahassee, FL 32303, USA

3. Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden

4. Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France

5. Environmental Studies Program, University of Colorado, Boulder, CO 80309, USA

Abstract

Temperature variability and extremes can have profound impacts on populations and ecological communities. Predicting impacts of thermal variability poses a challenge, because it has both direct physiological effects and indirect effects through species interactions. In addition, differences in thermal performance between predators and prey and nonlinear averaging of temperature-dependent performance can result in complex and counterintuitive population dynamics in response to climate change. Yet the combined consequences of these effects remain underexplored. Here, modelling temperature-dependent predator–prey dynamics, we study how changes in temperature variability affect population size, collapse and stable coexistence of both predator and prey, relative to under constant environments or warming alone. We find that the effects of temperature variation on interacting species can lead to a diversity of outcomes, from predator collapse to stable coexistence, depending on interaction strengths and differences in species' thermal performance. Temperature variability also alters predictions about population collapse—in some cases allowing predators to persist for longer than predicted when considering warming alone, and in others accelerating collapse. To inform management responses that are robust to future climates with increasing temperature variability and extremes, we need to incorporate the consequences of temperature variation in complex ecosystems. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.

Funder

European Research Council, EU Horizon 2020

Swedish Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3