Telomeres in cancer and ageing

Author:

Donate Luis E.1,Blasco Maria A.1

Affiliation:

1. Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain

Abstract

Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3