Environmentally induced changes to brain morphology predict cognitive performance

Author:

Pike Thomas W.1ORCID,Ramsey Michael12,Wilkinson Anna13ORCID

Affiliation:

1. School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK

2. School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK

3. Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan

Abstract

The relationship between the size and structure of a species' brain and its cognitive capacity has long interested scientists. Generally, this work relates interspecific variation in brain anatomy with performance on a variety of cognitive tasks. However, brains are known to show considerable short-term plasticity in response to a range of social, ecological and environmental factors. Despite this, we have a remarkably poor understanding of how this impacts on an animal's cognitive performance. Here, we non-invasively manipulated the relative size of brain regions associated with processing visual and chemical information in fish (the optic tectum and olfactory bulbs, respectively). We then tested performance in a cognitive task in which information from the two sensory modalities was in conflict. Although the fish could effectively use both visual and chemical information if presented in isolation, when they received cues from both modalities simultaneously, those with a relatively better developed optic tectum showed a greater reliance on visual information, while individuals with relatively better developed olfactory bulbs showed a greater reliance on chemical information. These results suggest that short-term changes in brain structure, possibly resulting from an attempt to minimize the costs of developing unnecessary but energetically expensive brain regions, may have marked effects on cognitive performance. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3