Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana

Author:

Alsharafa Khalid1,Vogel Marc Oliver1,Oelze Marie-Luise1,Moore Marten1,Stingl Nadja2,König Katharina1,Friedman Haya3,Mueller Martin J.2,Dietz Karl-Josef1

Affiliation:

1. Biochemistry and Physiology of Plants, Bielefeld University, Bielefeld 33501, Germany

2. Pharmaceutical Biology, Julius-von-Sachs-Institute for Biosciences, University of Wuerzburg, Wuerzburg, Germany

3. Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan 50250, Israel

Abstract

High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m −2 s −1 (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m −2 s −1 ), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO 2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3