The translation elongation cycle—capturing multiple states by cryo-electron microscopy

Author:

Frank Joachim123ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA

2. Howard Hughes Medical Institute, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA

3. Department of Biological Sciences, Columbia University, Black Building, 650 W. 168th Street, New York, NY 10032, USA

Abstract

During the work cycle of elongation, the ribosome, a molecular machine of vast complexity, exists in a large number of states distinguished by constellation of its subunits, its subunit domains and binding partners. Single-particle cryogenic electron microscopy (cryo-EM), developed over the past 40 years, is uniquely suited to determine the structure of molecular machines in their native states. With the emergence, 10 years ago, of unsupervised clustering techniques in the analysis of single-particle data, it has been possible to determine multiple structures from a sample containing ribosomes equilibrating in different thermally accessible states. In addition, recent advances in detector technology have made it possible to reach near-atomic resolution for some of these states. With these capabilities, single-particle cryo-EM has been at the forefront of exploring ribosome dynamics during its functional cycle, along with single-molecule fluorescence resonance energy transfer and molecular dynamics computations, offering insights into molecular architecture uniquely honed by evolution to capitalize on thermal energy in the ambient environment. This article is part of the themed issue ‘Perspectives on the ribosome’.

Funder

National Institute of General Medical Sciences

Howard Hughes Medical Institute

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3