Capturing multiple-type interactions into practical predictors of type replacement following human papillomavirus vaccination

Author:

Man Irene12ORCID,Auranen Kari34,Wallinga Jacco12,Bogaards Johannes A.15ORCID

Affiliation:

1. Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands

2. Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands

3. Department of Mathematics and Statistics, University of Turku, Vesilinnantie 5, 20500 Turku, Finland

4. Department of Clinical Medicine, University of Turku, Vesilinnantie 5, 20500 Turku, Finland

5. Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, UMC, Amsterdam, The Netherlands

Abstract

Current HPV vaccines target a subset of the oncogenic human papillomavirus (HPV) types. If HPV types compete during infection, vaccination may trigger replacement by the non-targeted types. Existing approaches to assess the risk of type replacement have focused on detecting competitive interactions between pairs of vaccine and non-vaccine types. However, methods to translate any inferred pairwise interactions into predictors of replacement have been lacking. In this paper, we develop practical predictors of type replacement in a multi-type setting, readily estimable from pre-vaccination longitudinal or cross-sectional prevalence data. The predictors we propose for replacement by individual non-targeted types take the form of weighted cross-hazard ratios of acquisition versus clearance, or aggregate odds ratios of coinfection with the vaccine types. We elucidate how the hazard-based predictors incorporate potentially heterogeneous direct and indirect type interactions by appropriately weighting type-specific hazards and show when they are equivalent to the odds-based predictors. Additionally, pooling type-specific predictors proves to be useful for predicting increase in the overall non-vaccine-type prevalence. Using simulations, we demonstrate good performance of the predictors under different interaction structures. We discuss potential applications and limitations of the proposed methodology in predicting type replacement, as compared to existing approaches. This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses’.

Funder

Strategic Programme from the National Institute for Public Health and the Environment (RIVM) of the Netherlands

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3