Exploring the neural basis of fear produced by mental imagery: imaginal exposure in individuals fearful of spiders

Author:

Hoppe Johanna M.1,Holmes Emily A.12,Agren Thomas1ORCID

Affiliation:

1. Department of Psychology, Uppsala University, Box 1225, 75142 Uppsala, Sweden

2. Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 17165 Solna, Stockholm, Sweden

Abstract

Imaginal exposure, i.e. reducing fear using exposure to mental imagery, is a widely used psychological treatment technique for dysfunctional fears. Yet, little is known about its underlying neural mechanisms. The present study examines the neural basis of imaginal exposure using a novel experimental procedure consisting of repeated exposure to flashpoint mental imagery of phobic (spiders) and neutral (gloves) stimuli. Whether the 10 min long imaginal exposure procedure could reduce fear responses was examined one week later. Thirty participants fearful of spiders underwent the experimental procedure. Neural activity was assessed using functional magnetic resonance imaging (session 1). Subjective fear and skin conductance responses were measured throughout the study (sessions 1 and 2). Imaginal exposure evoked intense fear and heightened skin conductance responses, and indicated robust activation in several brain regions, including amygdala, midcingulate cortex and insula. Findings demonstrate that neural activity in fear-processing brain areas can be elicited solely by generating a mental image of a phobic stimulus, that is, in the absence of the percept. Relevant for treatment development, results reveal that a single 10 min session of brief exposures to flashpoint mental imagery can lead to lasting reductions in phobic fear at both the subjective and physiological levels. This article is part of the theme issue ‘Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.

Funder

Vetenskapsrådet

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3