Correlation and studies of habitat selection: problem, red herring or opportunity?

Author:

Fieberg John1,Matthiopoulos Jason2,Hebblewhite Mark3,Boyce Mark S.4,Frair Jacqueline L.5

Affiliation:

1. Biometrics Unit, Minnesota Department of Natural Resources, 5463-C W. Broadway, Forest Lake, MN 55434, USA

2. NERC Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, UK

3. Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA

4. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

5. State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA

Abstract

With the advent of new technologies, animal locations are being collected at ever finer spatio-temporal scales. We review analytical methods for dealing with correlated data in the context of resource selection, including post hoc variance inflation techniques, ‘two-stage’ approaches based on models fit to each individual, generalized estimating equations and hierarchical mixed-effects models. These methods are applicable to a wide range of correlated data problems, but can be difficult to apply and remain especially challenging for use–availability sampling designs because the correlation structure for combinations of used and available points are not likely to follow common parametric forms. We also review emerging approaches to studying habitat selection that use fine-scale temporal data to arrive at biologically based definitions of available habitat, while naturally accounting for autocorrelation by modelling animal movement between telemetry locations. Sophisticated analyses that explicitly model correlation rather than consider it a nuisance, like mixed effects and state-space models, offer potentially novel insights into the process of resource selection, but additional work is needed to make them more generally applicable to large datasets based on the use–availability designs. Until then, variance inflation techniques and two-stage approaches should offer pragmatic and flexible approaches to modelling correlated data.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3