Keeping time without a spine: what can the insect clock teach us about seasonal adaptation?

Author:

Denlinger David L.1ORCID,Hahn Daniel A.2,Merlin Christine3,Holzapfel Christina M.4,Bradshaw William E.4

Affiliation:

1. Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA

2. Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA

3. Department of Biology, Texas A&M University, College Station, TX, 77843, USA

4. Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA

Abstract

Seasonal change in daylength (photoperiod) is widely used by insects to regulate temporal patterns of development and behaviour, including the timing of diapause (dormancy) and migration. Flexibility of the photoperiodic response is critical for rapid shifts to new hosts, survival in the face of global climate change and to reproductive isolation. At the same time, the daily circadian clock is also essential for development, diapause and multiple behaviours, including correct flight orientation during long-distance migration. Although studied for decades, how these two critical biological timing mechanisms are integrated is poorly understood, in part because the core circadian clock genes are all transcription factors or regulators that are able to exert multiple effects throughout the genome. In this chapter, we discuss clocks in the wild from the perspective of diverse insect groups across eco-geographic contexts from the Antarctic to the tropical regions of Earth. Application of the expanding tool box of molecular techniques will lead us to distinguish universal from unique mechanisms underlying the evolution of circadian and photoperiodic timing, and their interaction across taxonomic and ecological contexts represented by insects. This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.

Funder

National Institute of Food and Agriculture

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3