From remote enhancers to gene regulation: charting the genome's regulatory landscapes

Author:

Symmons Orsolya1,Spitz François1

Affiliation:

1. Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Abstract

Vertebrate genes are characterized by the presence of cis -regulatory elements located at great distances from the genes they control. Alterations of these elements have been implicated in human diseases and evolution, yet little is known about how these elements interact with their surrounding sequences. A recent survey of the mouse genome with a regulatory sensor showed that the regulatory activities of these elements are not organized in a gene-centric manner, but instead are broadly distributed along chromosomes, forming large regulatory landscapes with distinct tissue-specific activities. A large genome-wide collection of expression data from this regulatory sensor revealed some basic principles of this complex genome regulatory architecture, including a substantial interplay between enhancers and other types of activities to modulate gene expression. We discuss the implications of these findings for our understanding of non-coding transcription, and of the possible consequences of structural genomic variations in disease and evolution.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3