The macrophage checkpoint CD47 : SIRPα for recognition of ‘self’ cells: from clinical trials of blocking antibodies to mechanobiological fundamentals

Author:

Andrechak Jason C.12ORCID,Dooling Lawrence J.1ORCID,Discher Dennis E.1ORCID

Affiliation:

1. Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA, USA

2. Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Immunotherapies against some solid tumour types have recently shown unprecedented, durable cures in the clinic, and the most successful thus far involves blocking inhibitory receptor ‘checkpoints’ on T cells. A similar approach with macrophages is emerging by blocking the ubiquitously expressed ‘marker of self’ CD47 from binding the inhibitory receptor SIRPα on macrophages. Here, we first summarize available information on the safety and efficacy of CD47 blockade, which raises some safety concerns with the clearance of ‘self’ cells but also suggests some success against haematological (liquid) and solid cancers. Checkpoint blockade generally benefits from parallel activation of the immune cell, which can occur for macrophages in multiple ways, such as by combination with a second, tumour-opsonizing antibody and perhaps also via rigidity sensing. Cytoskeletal forces in phagocytosis and inhibitory ‘self’-signalling are thus reviewed together with macrophage mechanosensing, which extends to regulating levels of SIRPα and the nuclear protein lamin A, which affects phenotype and cell trafficking. Considerations of such physical factors in cancer and the immune system can inform the design of new immunotherapies and help to refine existing therapies to improve safety and efficacy. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.

Funder

NIH

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3