Both hygienic and non-hygienic honeybee, Apis mellifera , colonies remove dead and diseased larvae from open brood cells

Author:

Al Toufailia Hasan1ORCID,Evison Sophie E. F.2,Hughes William O. H.1ORCID,Ratnieks Francis L. W.1ORCID

Affiliation:

1. School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK

2. Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

Abstract

Hygienic behaviour is a group defence in which dead or diseased individuals are excluded. In the honeybee, Apis mellifera , hygienic behaviour refers to uncapping and removing dead and diseased larvae and pupae from sealed brood cells. We quantified removal of freeze-killed and chalkbrood-infected larvae from open cells in 20 colonies. We also measured removal of freeze-killed brood from sealed cells. Study colonies ranged from non-hygienic to fully hygienic (52–100% removal within 2 days). All larvae killed in open cells were removed. This shows that all colonies, including those with low hygienic behaviour against dead brood in sealed cells, are highly hygienic against dead brood in open cells and suggests that low hygienic behaviour against dead brood in sealed cells is a trait in its own right. This may also contribute to understanding why hygienic behaviour is uncommon in A. mellifera , which is puzzling as it reduces several diseases without detrimental effects. In particular, the result provides indirect support for the hypothesis that there are two adaptive peaks conferring disease resistance: (i) high hygienic behaviour: diseased brood are removed quickly, in some cases before becoming infective; (ii) low hygienic behaviour: diseased brood remain isolated within sealed cells. This article is part of the Theo Murphy meeting issue ‘Evolution of pathogen and parasite avoidance behaviours'.

Funder

Esmée Fairbairn Foundation

Rowse Honey Ltd

University of Damascus

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3