Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface

Author:

Guth Sarah1ORCID,Visher Elisa1ORCID,Boots Mike12ORCID,Brook Cara E.1ORCID

Affiliation:

1. Department of Integrative Biology, University of California, Berkeley, CA, USA

2. Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK

Abstract

Historically, efforts to assess ‘zoonotic risk’ have focused mainly on quantifying the potential for cross-species emergence of viruses from animal hosts. However, viruses clearly differ in relative burden, both in terms of morbidity and mortality (virulence) incurred and the capacity for sustained human-to-human transmission. Extending previously published databases, we delineated host and viral traits predictive of human mortality associated with viral spillover, viral capacity to transmit between humans following spillover and the probability of a given virus being zoonotic. We demonstrate that increasing host phylogenetic distance from humans positively correlates with human mortality but negatively correlates with human transmissibility, suggesting that the virulence induced by viruses emerging from hosts at high phylogenetic distance may limit capacity for human transmission. Our key result is that hosts most closely related to humans harbour zoonoses of lower impact in terms of morbidity and mortality, while the most distantly related hosts—in particular, order Chiroptera (bats)—harbour highly virulent zoonoses with a lower capacity for endemic establishment in human hosts. As a whole, our results emphasize the importance of understanding how zoonoses manifest in the human population and also highlight potential risks associated with multi-host transmission chains in spillover. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.

Funder

National Institutes of Health

Bioscience for the Future

Miller Institute for Basic Research at the University of California, Berkeley

National Science Foundation

Defense Advanced Research Projects Agency

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3