A computational framework for the study of confidence in humans and animals

Author:

Kepecs Adam1,Mainen Zachary F.2

Affiliation:

1. Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA

2. Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasília s/n, 1400-038 Lisbon, Portugal

Abstract

Confidence judgements, self-assessments about the quality of a subject's knowledge, are considered a central example of metacognition. Prima facie, introspection and self-report appear the only way to access the subjective sense of confidence or uncertainty. Contrary to this notion, overt behavioural measures can be used to study confidence judgements by animals trained in decision-making tasks with perceptual or mnemonic uncertainty. Here, we suggest that a computational approach can clarify the issues involved in interpreting these tasks and provide a much needed springboard for advancing the scientific understanding of confidence. We first review relevant theories of probabilistic inference and decision-making. We then critically discuss behavioural tasks employed to measure confidence in animals and show how quantitative models can help to constrain the computational strategies underlying confidence-reporting behaviours. In our view, post-decision wagering tasks with continuous measures of confidence appear to offer the best available metrics of confidence. Since behavioural reports alone provide a limited window into mechanism, we argue that progress calls for measuring the neural representations and identifying the computations underlying confidence reports. We present a case study using such a computational approach to study the neural correlates of decision confidence in rats. This work shows that confidence assessments may be considered higher order, but can be generated using elementary neural computations that are available to a wide range of species. Finally, we discuss the relationship of confidence judgements to the wider behavioural uses of confidence and uncertainty.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3