Transposable elements have contributed human regulatory regions that are activated upon bacterial infection

Author:

Bogdan Lucia1ORCID,Barreiro Luis2,Bourque Guillaume13ORCID

Affiliation:

1. Department of Human Genetics, McGill University, Montreal, Quebec, Canada

2. Department of Human Genetics, University of Chicago, Chicago, IL, USA

3. Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada

Abstract

Transposable elements (TEs) are increasingly recognized as important contributors to mammalian regulatory systems. For instance, they have been shown to play a role in the human interferon response, but their involvement in other mechanisms of immune cell activation remains poorly understood. Here, we investigated the profile of accessible chromatin enhanced in stimulated human macrophages using ATAC-seq to assess the role of different TE subfamilies in regulating gene expression following an immune response. We found that both previously identified and new repeats belonging to the MER44, THE1, Tigger3 and MLT1 families provide 14 subfamilies that are enriched in differentially accessible chromatin and found near differentially expressed genes. These TEs also harbour binding motifs for several candidate transcription factors, including important immune regulators AP-1 and NF-κB, present in 96% of accessible MER44B and 83% of THE1C instances, respectively. To more directly assess their regulatory potential, we evaluated the presence of these TEs in regions putatively affecting gene expression, as defined by quantitative trait locus (QTL) analysis, and found that repeats are also contributing to accessible elements near QTLs. Together, these results suggest that a number of TE families have contributed to the regulation of gene expression in the context of the immune response to infection in humans. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.

Funder

Institute of Genetics

Fonds de Recherche du Québec - Santé

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3