Syntax and compositionality in animal communication

Author:

Zuberbühler Klaus123ORCID

Affiliation:

1. Institute of Biology, University of Neuchatel, Rue Emile Argand 11, 2000 Neuchatel, Switzerland

2. School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK

3. Centre for the Interdisciplinary Study of Language Evolution, University of Zurich, Plattenstrasse 54, 8032 Zurich, Switzerland

Abstract

Syntax has been found in animal communication but only humans appear to have generative, hierarchically structured syntax. How did syntax evolve? I discuss three theories of evolutionary transition from animal to human syntax: computational capacity, structural flexibility and event perception. The computation hypothesis is supported by artificial grammar experiments consistently showing that only humans can learn linear stimulus sequences with an underlying hierarchical structure, a possible by-product of computationally powerful large brains. The structural flexibility hypothesis is supported by evidence of meaning-bearing combinatorial and permutational signal sequences in animals, with sometimes compositional features, but no evidence for generativity or hierarchical structure. Again, animals may be constrained by computational limits in short-term memory but possibly also by limits in articulatory control and social cognition. The event categorization hypothesis, finally, posits that humans are cognitively predisposed to analyse natural events by assigning agency and assessing how agents impact on patients, a propensity that is reflected by the basic syntactic units in all languages. Whether animals perceive natural events in the same way is largely unknown, although event perception may provide the cognitive grounding for syntax evolution. This article is part of the theme issue ‘What can animal communication teach us about human language?’

Funder

Leverhulme Trust

Royal Zoological Society of Scotland

FP7 Ideas: European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3