Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living

Author:

Shepard Emily L. C.1,Williamson Cara2ORCID,Windsor Shane P.2ORCID

Affiliation:

1. Department of Biosciences, Swansea University, Swansea SA2 8PP, UK

2. Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.

Funder

European Research Council

Royal Society

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CGull: A Non-Flapping Bioinspired Composite Morphing Drone;Biomimetics;2024-08-31

2. Wind gradient exploitation during foraging flights by black skimmers (Rynchops niger);Journal of Experimental Biology;2024-08-15

3. Towards High Resolution Weather Monitoring With Sound Data;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Aerodynamic response of a red-tailed hawk to discrete transverse gusts;Bioinspiration & Biomimetics;2024-04-03

5. Joint extension speed dictates bio-inspired morphing trajectories for optimal longitudinal flight dynamics;Journal of The Royal Society Interface;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3