Quantitative genetic variance and multivariate clines in the Ivyleaf morning glory, Ipomoea hederacea

Author:

Stock Amanda J.1,Campitelli Brandon E.1,Stinchcombe John R.12

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2

2. Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2

Abstract

Clinal variation is commonly interpreted as evidence of adaptive differentiation, although clines can also be produced by stochastic forces. Understanding whether clines are adaptive therefore requires comparing clinal variation to background patterns of genetic differentiation at presumably neutral markers. Although this approach has frequently been applied to single traits at a time, we have comparatively fewer examples of how multiple correlated traits vary clinally. Here, we characterize multivariate clines in the Ivyleaf morning glory, examining how suites of traits vary with latitude, with the goal of testing for divergence in trait means that would indicate past evolutionary responses. We couple this with analysis of genetic variance in clinally varying traits in 20 populations to test whether past evolutionary responses have depleted genetic variance, or whether genetic variance declines approaching the range margin. We find evidence of clinal differentiation in five quantitative traits, with little evidence of isolation by distance at neutral loci that would suggest non-adaptive or stochastic mechanisms. Within and across populations, the traits that contribute most to population differentiation and clinal trends in the multivariate phenotype are genetically variable as well, suggesting that a lack of genetic variance will not cause absolute evolutionary constraints. Our data are broadly consistent theoretical predictions of polygenic clines in response to shallow environmental gradients. Ecologically, our results are consistent with past findings of natural selection on flowering phenology, presumably due to season-length variation across the range.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3